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Viewgraph 2 The HCE Participants

An ocean-acoustics experiment requires the talents of many dedicated professionals as well
as a dedicated sponsor. The sponsors for this experiment were K. Lima (NUSC/IR) and M. Orr
(ONR 1125 OA). The research team that conducted this experiment and each member's area of
responsibility is shown on this viewgraph. Our objective was to obtain calibroted sound
transmission data near the AMCOR 6010 borehole, a recently surveyed area with known
geophysical properties. We were asked to conduct the experiment in May of 1988 and, with a lot
of hard work and luck, conducted the experiment in September 1988. In acknowledging
individuals who made this experiment possible, I must mention Helen Darmera, Office of the
Comptroller, D.O.N. During the spring of 1988 the Secretary of Defense froze all Navy R&D
contract obligations. We happened to be one of the few exceptions, perhaps the only exception,
granted funds for basic research during this time. Helen Darmera was a tremendous help in getting
the comptroller’s attention and the granting of a waiver. (See letter below.)
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Viewgraph 3 The Experiinental Area

This viewgraph shows the general location of the experimental area. Part (A) shows the
locale on the east coast with respect to the Hudson Canyon and NUSC (NUWC-NL). Part (B)
shows the experimental tracks in relation to the geopulse and Huntec surveys conducted by the
Woods Hole Oceanographic Institution and the University of Texas at Austin. Our particular

- tracks were based on preexperiment discussions with John Ewing and John Milleman of WHOL.
One set of tracks was designed to parallel the shelf (TL 2-2/3-1), the other, to proceed
" perpendicular to the shelf (TL3-3). The tracks were run at constant RPM operation between

selected waypoints:

RUN WAYPOINT 1 WAYPOINT 2

TL2-2 39° 01.2'N73° 08.0'W 39°04.3'N,73° 04.9'W
TL3-1 39° 02.75'N,73° 06.5'W 39° 05.1'N,73° 04.1'W
TL3-3 39° 02.75'N,73° 06.5'W 39° 11.8'N,73° 21.9'W

Additional racks were made but are not the subject of this paper. The actual tracks differ,
as you can observe, from the tracks used by Milliman. The reason for this difference was our
desire to have a rather flat propagation track as well as a sloping one. A brief site survey was run
shortly after we arrived at the AMCOR site a.d the waypoints and tracks chosen.

L_Aooeaaton Por
ATIS Grakl P
DTIC TAB Q
Unannounced ]
sustification __ I}
By
. Distribution/
Avallability Codes
Avail and/or
s Dist Speoial
i




Viewgraph 4 The Experiment

This viewgraph is a schematic of the experiment and the values shown are nominal but
accurate. The basic experiment was to measure calibrated sound transmissions such that both TL
and horizontal wavenumber spectra could be determined. Flat and sloping cases were studied.
Oceanographic and bathymetric data were also obtained in order that we could compare our results
with both range-independent and dependent calculations. The experiment required a calin sea state
for two reasons: (a) sea surface spectra were not measured and (b) our vertical array only had
one depth gauge by which tilt could be determined. Although we had some days with rough seas, ™
the data discussed in this paper was taken when the sea was flat.

HUDSON CANYON EXPERIMENT

® TWO BASIC CASES:

‘A’ UNIFORM DEPTH ‘8" VARYING DEPTH
‘_’ CALM 2‘:"‘ 0 CALM 26 km
SOURCE sounce Iu m

—-Q—.
I m ' - (24) HYDROPHONES
g (264) HYDROPHONES

e EXPERIMENTAL PARAMETERS

WATER DEPTH: ‘ATIm, ‘B TIm-—=52m

RANGES: 0-4 km, 0-26 km

SEA STATE: < BEAUFORT 2

OCEANOGRAPHIC COND.: STABLE APPEARANCE, VARIABLE 8VP

FREQUENCIES: 50-75-178-278-376- §25-800 Hz

SOURCE DEPTH: JSAND SO m .,
SPEED: CONTS. MIN. RPM (2 AND 5 kis)

RECEWER DEPTHS: 24 CHANNELS- SPACED 2.5 m- "UP FROM BOTTOM"

® BASIC MEASUREMENTS UNDER CALM SEA STATE CONDITIONS
o CALIBRATED PROPAGATION LOSS VS RANGE
o OCEANOGRAPHIC DATA - BATHYMETRY
® HORIZONTAL WAVENUMBFR SPECTRA - 4 km AND 26 km
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Viewgraph § The Receiver System

This viewgraph shows the configuration of the receiving array and SEACAL measuremeit
systems. This system consisted of a sparbuoy (12 m (40 ft), 4.9 m (16 ft) above surface) with a
radar transponder (Del NORTE), a 7.62 m (25 ft) tether, a subsurface buoy (700 Ibs of buoyancy),
a pressure transducer, 24 (Bentnos AQ-17) hydrophones mounted on a "hair” faired cable with
2.5-m spacing, an acoustic release, and an 1800-1b "Railroad - Wheel" anchor. The pressure
vessel and electronics (the SEACAL) were located approximately 150 m from the anchor. These
were connected by a 3/8-in. double braided lift line to a surface float with a radar reflector. Thus,
this arrangement permitted the lifting, removal, reconditioning and replacement of the SEACAL
system without moving the array.

Although the subsurface buoy had sufficient buoyancy force to keep the array vertical, the
mismatch created by the length of the system between the anchor and sparbouy (78 m) and the
water depth (73 m) resulted in a range bias between 5-11 m, depending on the sea state. The
uncertainty in range due to the radar transponder was determined by at-sea and shore calibrations (0
bet2m.

The SEACAL system is a 27-channel data acquisition system and utilizes two standard
ViiS tape recorders to record up to 10 gigabytes of data over either a standard record of 8 hours or
a slow recording mode of 16 hours. The system was configured for this test to acquire data from
24 (AQ-17) hydrophone channels, a depth gauge and a reference clock. Each hydrophone channel
had its own signal conditioring consisting of an AQ-17 hydrophone, preamplifier, 0 dB gain
buffer amplifier, preemphasis (-6 dB/octave from 1 kHz), a variable gain amplifier (0-48, 50-98
dB in 6 dB steps), an 8-pole Tchebychev antialiasing filter, a sample and hold followed by a 14-bit
analog to digital converter (AID) with a 3263.4 Hz sample rate. All channels are sampled
simultaneously preserving channel-to-channel phase information. Each channel's data sample is
enabled on the data bus in sequence resulting in a bus data rate of 88,112 Hz. Digital words
containing the depth, time code, and synchronization data are interleaved with the acoustic data by
the control timing board, crcating a fixed repeating sequence. This timing-and-control circuit
controls all AID rates and r.es synchronously from the 88,112 Hz word-rate clock of the video.

The AQ-17 hydrophones were chosen because their frequency response is flat between 10

and 1 kHz. Hydrophones were calibrated at the NRL/USRD and recalibrated at the NUWC Dodge
Pond facility. The mean hydrophone sensitivity was -174.3 dBV/ uPa £ 0.4.




Hydrophone Locations And Height Off Bottom

HYDNo. SN HS Height Off D (m)

dBVMPa  Bottom (m)
1 177 -174.0 58.5 14.95
2 172 -174.0 55.55 17.45
3 173 -175.6 53.05 19.95 -
4 174 -174.0 50.55 27.45
3 175 -174.0 48.05 24.95 |
6 176 -174.4 45.55 27.45
7 178 -174.6 43.05 29.95
8 179 -174.6 40.55 32.45
9 180 -174.1 38.05 34.95
10 182 -174.4 35.55 37.45
11 183 -i74.6 1.05 39.95
12 185 -174.0 30.55 42.45
13 186 -174.2 28.05 44.95
14 187 -174.4 25.55 47.45
15 188 -174.0 22.05 49.95
16 189 -174.0 20.55 52.45
17 190 -174.0 18.05 54.95
18 191 -174.2 15.55 57.45
19 192 -174.0 13.05 59.95
20 193 -174.4 10.35 62.45
21 194 -175.0 8.05 64.95
22 195 -173.6 5.55 67.45

! 23 196 -174 3.05 69.95

24 197 -174.4 0.55 72.45

1743 £ .4

dBV/uPam

19
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VIEWGRAPH 6: THE SOUND SOURCE




Viewgraph 6 The Sound Source

The sounc source used in this experiment was a USRD type J15-3, consisting of three
moving-coil-driven rubber diaphragms. This transducer was capable of operating in the 50 to 600
Hz range with levels of 165 dB//1 uPa/lm. (Transmit current response 164 dB//1 pPa/1A/lm and
voltage 23 dB//1 uPa/1V/Im @ 50 Hz.) The source was mounted to a frame with a fin stabilizer.
A calibrated hydrophone (USRD-H91) was attached to the source with a 2-meter flexible cable and
was used to monitor the source level. In addition, monitoring of the drive amplifier voltage and
current provided an additional check on the transmitted level. This viewgraph shows a schematic
of the source tow body and the source data acquisition system. The J15-3 and H91 monitor were
calibrated at the NUWC Dodge Pond facility to ensure the integrity of the NRL/URD calibrations.

13




Viewgraph 7 Sound Source Spectrum

This viewgraph shows an example of the transmitted tones from our F9 sequence (50-175-
375-425 Hz) as received on hydrophone 18 of the SEACAL measurement system.

Two tone sequences were used for the data presented here, the second, not shown, was F8
(75-275-525-600 Hz). The four tones from the F9 sequence shown in this viewgraph illustrate the
high signal-to-noise ratios obtained in our 4 km runs. -

.

HUDSON CANYON EXPERIMENT SEPT 88
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Viewgraph 8 Sound Velocity

During the course of this experiment , conductivity, temperature and sound-speed- versus-
depth measurements were made. Two measurement devices were utilized, the SEABIRD CTD and
the Applied Micro Systems SVP. The CTD data were used with Wilson's equation to determine
sound-speed-versus-depth profiles. The SVP measurement employed a sonic velocimeter.
Simultaneous measurements enable the comparison of both measured and computed SVP. The
problem encounted with these measurements was the necessity of stopping the research vessel,
USS Ranger, hence measurements were made &t tuming points of our measurments and at a few
selected times during the course of the transmission runs. This resulted in a sparse sampling of the
environment, sparser than one would like for a coastal environmer: Sxamination of these profiles
shown in this viewgraph illustrates the problem. The sound ve! - .. profile shows an isovelocity
layer (1520 m/sec) to a depth of 15 meters and a decrease at ¢ rate of 6C/0D ~ 1.5sec-1 0 a
depth of 35 meters allowed by another isovelocity layer (1487 m/sec). The thermocline region also
shows salinity variations. Examination of the other SVP/CTD data shows a combined spatial and
temporal variability in this 15-36 m region, which is an important factor io be considered in these
transmission studies.

HUDSON CANYON EXPERIMENT SEPT 88

TEMPERATURE SALINITY SOUND SPEED
(*C (m/sec)
6.000 25.00 30.00 . 40.00 1400 1600
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TEMPERATURE, SALINITY, AND SOUND SPEED VERSUS DEPTH. THESE DATA ARE
REPRESENTATIVE OF THE OCEANOGRAPHIC DATA FOR TEST 6 (TLV2-2).




Viewgraph 9 TL202, Range Versus Time

The experiment was designed to be conducted at a constant speed. This was accomplished
by working closely with the ship’s captain. Two basic types of runs were conducted. The slower
speed run shown on this viewgraph ( ~ 1.835 m/sec) was conducted by selecting remote locations,
referred to as "waypoints,” at opposite extremes with the buoy as the marker for CPA. This
enabled a true course to be maintained. The speed was controlled by running the ship's power -
plant at constant minimum RPM. The slow speed was accomplished by single propeller operation
and by clutching in and out on a timed schedule. The longer, higher ship's speed runs were single ~
propeller constant RPM runs, Due to the low sea states, lack of strong winds, and currents, we
were able to maintairn fairly steady tracks and speed. Since the mean sonic speed is 1497 m sec
this corresponds to a Doppler shift of 1.23 x 10-3f, or £ 6.14 x 10-2 Hz for 50 Hz and 9.02 x 10-2
Hz at 75 Hz. By trial and error we were able to keep our CPA on the order of 100 m.

‘HUDSON CANYON EXPERIMENT SEPT 88
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Viewgraph 10 Signal Plus Noise Versus Time TL2-2

Shown on this viewgraph is the signal-plus-noise and noise levels comresponding to the
previous range-versus-time curve. The data shown here were processed at sea with a double-
Hann-shaded, 1024-point, Fourier transform approximately 1/3-seconds long. The origin of the
graph represents the start of the constant speed run. In this case, the propeller was clutched "in"
and "out" on a regular interval, and the result of this operasion is shown on the noise curve. The
signal-io-noise curve illustrates the high signal-to-noise rates and a pronounced model interference
pattern. This pattern is what one expects from two modes of equal amplitude and a smaller
amplitude third mode at short ranges. These results, when merged with the range-versus-time
data, form the basis for synthetic aperture processing.

HUDSON CANYON EXPERIMENT SEPT 88
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Viewgraphs 11, 12 and 13 The Synthetic Aperture and
High Resolution Doppler Techniques

A prime purpose of this experiment was to investigate the utility of the Fourier-Hankel
Technique (Frisk [1984]) and high resolution Doppler processing such as employed by Glattetre
(1989) to estimate the horizontal wave number spectrum. Shown on these three viewgraphs is the
mathematical outline of each approach, which differ in the practical implementation.

The "quardrature” approach employed by Frisk (1984) generates a complex pressure series
for a slowly moving source. This technique allows one to continuously adjust the reference
frequency, thereby compensating for frequency mismatch. However this techrique requires
precise position-versus-time data.

The sequential Fourier transform technique, sequeatial phase-corrected Fourier transforms,
is similar to the synthetic-aperture processing employé. by Yer: and Carey (1989). This technique
may be used at higher relative speeds, provided the ime sample for each Fourier transform is
short, the range smearing small, and the frequency and timing errors can be controlled.

The high resolution Doppler technique can be performed at higher relative speeds, but the
motion must be constant and the relative separation between the source and receiver must be
known. In particular, this technique holds promise for those applications using a towed array.

It is easily shown that the "quardrature” and ' Fourier” technique produce a biased estimate
of the wavenumber, that is, u s%.fted Lionzontal wavenumber spectra. Of course, this bias may be
cleminated by precise knowieri, 2 oof the mwion or by reducing the telative speed.

Finally, 1 show the re.avonsaiy berwesn the HRD approach and the Fourier-Hankel
transform. The importance of the V: term is that of an amplitude shading characteristic that can be
ignored if only the wavenumber charzcterization is required.
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THE PEKERIS WAVEGUIDE MODEL

Proe FW'_ Z.P/pwk.,}d 1) Gstont-brs T f e

. L
|

¢ =
2

'7\“: V(M-'I;)T
|
=6 m-sr? ey

FOR THE nth MODE

Pormm £ S Cos(%t-i?on%) "“t + B
(m)T v

AND
R K
B, (k)= j 'P%gi;..lu)c‘ rdv
(~)

THE RESULT

R (k0) = € Glka)S4 /d) S /82) SiN [‘mr(a-b.,,-g&)x,]
SNEVT(R-bou-22 )a)

Pom (ﬁ,‘d) P8AKS AT R = Rom +%_:_’_ [
o

A BIASED ESTIMATE!

VIEWGRAPH 12

20




THE FOURIER-HANKEL TRANSFORM
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Viewgraph 14 Measured Horizontal Wavenumber Spectra

TL 2-2, legs 1, 2, and 3 were transmission tests specifically conducted to measure the
horizontal wavenumber spectrum. Shown on this vie'vgraph are the linear horizontal waverumber
spectra for 50 Hz and hydrophones numbered 18 and 24. Also shown are the results of
calculations performed with SAFARI, using a simplified critical angle bottom without shear.
These spectra are plotted relative to the highest mode, but also scale relative to one another.
Qualitatively the calculations and model results agree.

18 Meas. 18 Cal. 24 Mcas. 24 Cal.

RM % % K RM % % K
1. 11 100 100 L1987 9.6 100 100 1975
2 7.4 67 34 .1886 122 127 114 .1895%
3. 1.45 16.5 1.5 1623 2.1 20.9 18.2 .160

The largest disagreement was in the estimates of the herizontal wavenumber. These biased
wavenumbers showed compliraentary shifts for legs 1 and 2. These bias errors are due to ()
Doppler, (b) frequency mismatch and (c) measurement timing errors. Performing a higher
resolution Fourier transform changes the bias. However, we have these snectra as a function of
depth, and we also have an independent measure of average sound speed.
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Viewgraph 15 Linear Horizontal Wavenumber Spectra
Versus Hydrophone Number

The sequence of wavenumber spectra clearly shows the modal amplitude dependence as a
function of depth. Here we show the spectra for the even numbered hydrophones. This case of
propagation in a 73 m waveguide at 50 Hz clearly shows three modes. This depth variation in

- modal amplitudes enables the determination of the vertical wavenumber. Although we have chosen
the Pekeris Waveguide as our model of sound transmission, the actual measured case has a
- variation in sonic speed with depth.

Since k = ky, sin(8) and according to Snell's law

sinf(2) _
<o - CONSTANT

further, since k%v =k2+ B%, where kyy is the water wavenumber and By is the vertical

wavenumber, we have at each depth,

kw(2)2 = By(2)2 + 2,

Y4 z Zz
K2 z=Jk2dz-—- kzwdz—JBv(z)z dz,

z
k2=(3) Jzkzw dz-(3) d( By(2)2 dz.

Now each integral represents the mean square value of the water and vertical

-2
wavenumbers. If we assume kfy = kw then we have

- k2= (Ew)2 - (Bv)z-

Since we measure the sonic speed variation in the water, we know the frequency, the
quantity Py can be determined by the depth variaticn of the modal peaks, a refined estimate of k
can be made.
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a. 50 Hz Modeshapes
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Viewgraph 16A Mode Shapes at 50 and 7§ Hz

The mode shapes at 50 Hz and 75 Hz, shown here, were obtained from the previously
discussed horizontal wavenumber spectra versus depth. These data have not been corrected for
scalloping losses or changes in hydrophone sensitivity.

The 50 Hz results were curve-fit by a VLMS (visual least mean square) as well as a
simplex [NELDER-MEADE] algorithm. The results were very close with respect to both vertical
and horizontal wavenumbers.

1 2 3
Bvlms 0.0286 0.0659 0.1182
Bv 0.0290 2.0662 0.1201
kh.Ims 0.2077 0.199 0.1732
0.2076 0.199 0.1719

kw = 0.2098

These results were obtained with the requirement that the pressure go to zero at the sea
surface. Better fits can be obtained, however these fits do nct correspond to this requirement.
These results appear to be consistent from leg 1 to leg 2, provided one accounts for changes in
water wavenumber.

Also shown are several modes for the 75 Hz data. These results were obtained two ways
(a) high resolution Doppler and (b) horizontal wavenumber sj:ectral estimates. The results are
comparable but not exactly the same.

MODE | 2 3

HRD Bv 0.0433 0.0806 0.122
k 0.312 0.0304 0.2899

HWNS By 0.033 0.066 0.1346
k 0.313 0.307 0.284
kw = 0.3147

The differences here are attributable to scalloping losses, that is, a loss of modal amplitude
when the mode is between wavenumber bins or frequency bins.
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Viewgraph 16B Safari Results

These SAFARI calculations were performed with a simulated bottom boundary condition, a
step increase in density (2/1) and sonic speed (1487 to 1560) at the interface. This condition
corresponds to a critical angle (~28°) bottom loss characteristic. This set of calculations is shown
to illustrate the character of the propagation. Calculations including the effects of shear were found
to indicate little if any effect at these frequencies. The wavenumber from this boundary condition
and geoacoustical modeling (Rogers) are shown below.

SAFARI ROGERS RESULTS SNAP

k1 0.208 2079 2077 2086
K 0.1978 198 199 .1989
k3 0.1797 184 1732 1824

1766

Notice the comparison between the wavenumbers places the uncertainty in the third
significant digit. Variation of velocity profile and variation of water depth to simulate tidal effects
results in a wavenumber variation of 0 [+ .009]. Parametric analysis was performed by Cederberg
and others to determine these sensitivities and to estimate the basic uncertainties in these
measurements. Three significant decimal places seem reasonable. Rogers employed a geoacoustic
model based on sediment properties and Biot theory. He used an iterative scheme to determine
modal attenuation factors and was able to achieve excellent agreement with these results and to
estimate the attenuation factors.

29




Viewgraph 17 The Vr Effect

Shown on this viewgraph are two examples of the wavenumber spectra for run TL 2-2.
On the left we sce the wavenumber spectrum that results from the conventional Fourier-Hankel
transform method. Clearly shown are four modal peaks. On the right is the equivalent spectrum
obuained without the Vr weighting. This spectra is wholly equivalent to the high resolution
Doppler spectra. We observe the values of the horizontal wavenumbers corresponding to each
peak remain unchanged, however, the relative model amplitudes of each mode have changed. For
example, the amplitude of mode 2 relative to mode 1 taken from the left hand side is 0.67
compared to 0.82 on the right hand side of the figure. This difference is more pronounced for the
third mode, 0.16 to0 0.37. The Vr weighting influcnces those modes which are attenuated most
rapidly. It would be possible to measure the change of mode amplitudes as a function of range in
this manner, provided the properties of the waveguide do not change or are range independent.
The major point made here is that neglecting the Vr weighting does not affect one's ability to
determine the modal structure in the waveguide, that is, the propagating wavenumbers.
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Viewgraphs 18, 19 and 20

These viewgraphs show the relative sound pressure plus noise level as a function of range.
These data for TL 2-2 legs 1 (50 Hz), 2 (50 Hz), 3 (75 Hz), show a bimodal structure at the longer
ranges with higher order (lower wavenumber) modes superimposed on this underlying structure at
shorter ranges. These higher order modes attenuate with increasing range, consistent with the
results found in our wavenumber spectra as a result of their mode attenuation values. Thus it
would be possible to determine the mode attenuation factors by sequential high resolution
wavenumber spectra. This result may be useful in range independent homogenous sedimentary
areas. A word of caution is necessary concerning sub-bottom compressional wave profiles and
range depth bathymetric effects which could prevent the application of these techniques.
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Viewgraph 21

Longer range runs provided transmission loss data for a flat bathymetry run (viewgraph
21) and a sloping bathymetry run (viewgraph 22). Viewgraph 21 clearly shows the persistence of
the bimodal structure at 50 Hz, persisting to a distance on the order of 20 km. One must note that,
at this range, our signal-to-noise ratio has decreased to the point that the noise is clearly seen.
- Given a larger source level, we would expect the structure to remain bimodal. The higher
frequencies (175, 375 and 425 Hz) show a very grassy structure at shorter ranges and an evolving
pattern at longer ranges. We believe that, at these higher frecuencies, a ray description is

appropriate. This pattern results from the higher angle rays being absorbed upon repeated bottom
interactions, whereas the lcwer angle rays propagate as up-going and down-coming ray bundles,
yiclding the more uniform appearance.
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Viewgraph 22

On the other hand, viewgraph 22 shows a slightly different story. One immediately sees a
change in the transmission loss at a range of approximately 16 km. This change is caused by the
change in bathymetry and the increase in bottom-reflected ship noise. A more subtle change is
observed in the S0 Hz data at a distance of 7-9 km. The apparent ship distance changes. The

bathymetry is slowly decreasing during this transmission loss run; however, we still see effects in *
the change in model content at S0 Hz.
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Yiewgraph 23

To investigate the range-dependent aspects of the wavenumber spectrum, high resolution
Doppler processing was used. Shown on this viewgraph is an HRD spectrum from run TL 3-1, a
flat bottom run. On the left is the logarithmic amplitude versus frequency, on the right, the lincar
amplitude versus frequency. We show both, as the linear plots have been used thus far in our
presentation. The linear plot clearly shows two separate modes. The logzrithmic plot enables one
to see two additional modes, however the logarithmic plot also enhances the noise levels. In the
next several viewgraphs I will show logarithmic plots. Shown on the left hand side of this
viewgraph are the Doppler-shifted frequencies, each mode, ana the relative level in dB re 1 volt.
The length of track covered by this spectra is ~ 2 km, and the relative speed is on the order of 2.5
m sec. Under these assumptions, we find th-t the wavenumber of mode 1 is

ki=2n Afiv=0.204,
and of mode 2,

ky = 0.191.

These results compare favorably to the previous values and are remarkable, since the average speed
of § knots was used.
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Viewgraphs 24 and 25 High Resolution Doppler Processing
(TL 3-1, L2, 50 HZ)

These two viewgraphs show the result for the flat bathymetry run. Seven sequential high
resolution Doppler spectra are shown for hydrophone 24. Specira 4 and 7 had a system overload
during the measurement interval and were discarded. The resulting spectra are shown on
viewgraph 25. Observe the dominant two modes in each spectra. Spectrum number 1 is the range
interval most distant from the receiver. Each spectrum covers a range interval of approximately 2
km. The Doppler shifts for each mode and relative level is indicated on the plot.

MODE 1 MODE 2
1. 081 63dB 076 -66dB
2. 081 -63.2 076  -63.4
3. 079 -58.9 075  -59.1
4. - - - -
5. 077 -57.2 074  -538
6. 076 518 -073  -49.1
7. -- -- - -

The variations in the Doppler shift are speed related with a means .079 and .075,
respectively, corresponding to wavenumbers very close to our theoretical values. The o =% .002
clearly brackets our theoretical value.

ki=21Af/, =0.207 Ak =1 .005

k2 =0.196 Ak = 1 .005

These numbers do not reflect changes in ships speed but are based on an av.. need of
2.4 msec.

The range variation of each mode is also easily observed. It is clear from the behavior
shown on this figure that the higher order modes are attenuated more rapidly than the lowest order
mode. This is clearly shown by comparing the behavior of the two dominant peaks with range.

Spectum 6 shows mode 1 to be 2.73 dB higher than mode 2. However, spectrum 1 shows mode
1 to be 3 dB less than mode 2.
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Viewgraphs 26 and 27 High Resolution Doppler Spectra
(TL 3-1, L3, 7§ HZ)

These two viewgraphs show the resuits at a frequency of 75 Hz. Again the overload
spectra were discarded. The six spectra are shown on viewgraph 27. This is an outward bound
leg and consequently the Doppler shift is negative. Spectrum 1 is the closest range interval,
whereas spectrum 7 is the farthest. The first mode wavenumber from run TL 2-2 was determined
to be 0.313, the value determined from these Doppler spectrum using the mean ship’s speed yields

ki = 0.310 = .00S.

The 75 Hz spectrum also yields the attenuation factor for each mode as a function of range. As
before, we observe a modal-dependent attenuation factor, the higher order modes attenuated more
with distance. With a more accurate real time measurement of relative velocity, these high
resolution Doppler spectra yield the horizontal wavenumbers.
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Viewgraph 28 The Sloping Bottom Case

The flat bathymetry TL runs yielded high resolution Doppler spectra which were similar in
structure along the total run. However, the range varying case shown here illustrates a different
trend. The left hand side of this viewgraph shows the high resolution Doppler spectrum for the
up-slope run at a frequency of S0 Hz; while the right side shows the down-slope run at a frequency
of 75 Hz. The unshaded spectra represent system overloading and should be ignored. Spectra
number 3 LHS and spectrum number 12 RHS show dramatic change in the modal content not due
to speed changes. In general, we observe a range dependence to the wavenumber specira.

o = 80 Mz T3, 818 -T n3-a, #t
BW = 1.2 miMz, AY = 1.28 x 10% BW = 2.4 mHz, AT = 0.28 xa'w’:

TIME/RANGE DOWN-SLOPE

FREQUENCY (Hz) FREQUENCY (Hz)
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Viewgraph 29 Linear High Resolution Doppler Spectrum

The 50 Hz, up-slope run is shown here as a series of linear high resolution Doppler
spectra. These spectra clearly illustrate the differences between the flat and sloping bottom cases.
The variation of modal amplitude with range is variable. The presence (see spectrum number 3) of
anomalous features not attributable to speed variations are observed. The particular feature shown
in spectra 3 seems to correlate with the variation of the sub-bottomn with range. The basic structure
revealed in these spectra is range dependent. Whereas the high resolution Doppler spectra yields
information conceming the modal structure, it appears to be strongly influenced by the range
dependent properties of the waveguide.
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Viewgraph 30 Summary and Conclusions

An experiment has been performed to measure sound transmission in 73 m of water under
calm sea state conditions. The transmission measurements at 50 and 75 Hz showed & repeatable
modal interference pattern as a function of range. Calculations performed with SAFARI and
measured geoacoustic profiles were found to agree with measurements neglecting shear wave
effects. Variations in this patiern were found to be caused by the range dependent bottom and sub
bottomn features.

The 50 Hz and 75 Hz results were processed using a Fourier-Hankel transform to yield
horizontal wavenumber spectra. These horizontal wavenumber spectra were shown to represent
biased estimates of the wavenumbers. We were able to eliminate this bias by the constraint
[k%v = klz‘ + B’ﬁ] and measurements at multiple depths. The variability of the horizontal
wavenumber due to processing and water column SVP temporal and range variations is estimated
to be £ .005. This estimate is consistent with the work of Cederberg.

We showed in this paper that the Fourier-Hankel transform is analogous to high resolution
Doppler spectral analysis. This HRD technique was used on the flat bathymetry runs to slow the
repeatable nature of the horizontal wavenuinber spectral characteristic. The advantage of this
technique lies in its case of impiementation and ability to be used at higher speeds. The HRD
analysis clearly shows the effects of the range-dependent sub-bottom {eatures. On the one hand,
these range-dependent effects clearly indicate the change of the effective boundary condition at the
sediment sub-bottom interface and illustrate part of the nature of shallow water variability.
However these sensitivities to range-dependent characteristics complicate the use of these
techniques as survey tools.

In the case of a uniform waveguide these wavenumber spectra yielded modal wavenumber
and attenuation constants. Inversions may yield geoacoustic profiles.

It is recognized that surveys using either the FH or HRD techniques and a towed array are
possible at survey speeds of 5 kts.
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